-16(t^2-4)=-4

Simple and best practice solution for -16(t^2-4)=-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16(t^2-4)=-4 equation:



-16(t^2-4)=-4
We move all terms to the left:
-16(t^2-4)-(-4)=0
We add all the numbers together, and all the variables
-16(t^2-4)+4=0
We multiply parentheses
-16t^2+64+4=0
We add all the numbers together, and all the variables
-16t^2+68=0
a = -16; b = 0; c = +68;
Δ = b2-4ac
Δ = 02-4·(-16)·68
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{17}}{2*-16}=\frac{0-16\sqrt{17}}{-32} =-\frac{16\sqrt{17}}{-32} =-\frac{\sqrt{17}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{17}}{2*-16}=\frac{0+16\sqrt{17}}{-32} =\frac{16\sqrt{17}}{-32} =\frac{\sqrt{17}}{-2} $

See similar equations:

| 7x+8-2=180 | | 5+x-3(x+4)=1-17 | | 3x+8+4x-2=180 | | (7x-2)(-2x+8)=0 | | 1000-10x-4.9x^2=0 | | 3.2/x=415 | | 9n=-25 | | 3+9n=-22 | | x^2-4=x-1.89= | | 100/x=10/360 | | 8j=4+9j | | 4(c+3)+5=2c+3 | | 2x+1+7x-39+5(x-1)+4x-18=180 | | 23=y/5+3 | | 2x+35=4x-29 | | 2x+1+7x-39+5(x-1)=180 | | -4(-2d+3)=3(-4d-4) | | X^2-11+68=5x+5 | | 5/6t-8=9 | | a=4500(1+(.10)(2)) | | 10x-7x+8x=11 | | 9^x-1=5^3x+1 | | x/4+2=80 | | 3(x-4)+7=27 | | x/2+8=28 | | 7x+12=114+3x | | x(23-23)+1=(20-3)-(18-2)-(4-5) | | x(23-23)+1=(20-3)-(18-2)+(4-5) | | x(23-23)+1=(20-3)-(18-2)+4+5 | | x(23-23)+1=(20-3)-(18-2)+4-5 | | x(23-23)+1=(20-3)-(18-2) | | x(23-23)+1=(20-3)-(18-2)+4 |

Equations solver categories